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ABSTRACT 

The n-theorem of dimensional analysis has been used to obtain similarity para- 
meters characterizing the interaction of a charged-particle gas with a magnetic field. 
These parameters a re  used to derive scaling relations for simulating ion-containment 
systems with electron-containment systems (electron analogs). The scaling conditions 
are used to correlate the results of an electron-containment experiment to a similar ion- 
containment experiment, both reported in the literature. The analysis is extended to 
include a discussion of the possibility of collisionless plasma simulation. 
containment simulation is considered from the viewpoint of the stability of static sys- 
tems. The theoretical possibility of flute instability simulation is discussed. 

Plasma- 
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ANALYSIS OF ELECTRON ANALOG SIMULATION OF ION 

CONTAINMENT IN MAGNl3IC FIELDS 

by Nelson L. Milder and Harold R. Kaufman 

Lewis Research Center 

SUMMARY 

A physical model of a one-component charged fluid was used to develop similarity 
parameters. These parameters, obtained by means of the r-theorem of dimensional 
analysis, are assumed to characterize the macroscopic motion and containment of the 
fluid in a magnetic field. The similarity described is between an ion-containment system 
and an electron analog of such a system. 

Scaling relations a r e  derived from the similarity parameters. They are used to 
scale ion-containment systems to their electron analogs. These relations are expressed 
in te rms  of the electron to ion mass  ratio me/mi and the electron to ion experiment 
geometric length ratio 1 e/z i. 

results reported herein are in general agreement with two cases reported in the litera- 
ture. These a r e  adiabatic particle motion in a magnetic field and the motion of a col- 
lisionless (Vlasov) charged-particle gas in a magnetic field. The scaling relations were 
used to correlate the results of an electron-model ion-prototype experiment reported in 
the literature. The scaling relations were found to yield good correlation. This indi- 
cates that, under controlled design simulation, dimensional analysis may well be appli - 
cable to interpretation of experimental results. 

An extension of the one-component results to the description of a two-component 
plasma is discussed. The similarity described is between an ion plasma (ion kinetic 
energy much greater than electron kinetic energy) and its electron analog (electron kine- 
tic energy much greater than ion kinetic energy). Here, the simulation of a hot colli- 
sionless ion plasma by means of a hot collisionless electron plasma is examined. It is 
demonstrated that simulation is possible for  static systems. The stability of static col- 
lisionless plasmas is considered, and it is shown that simulation of at least one type of 
instability associated with such systems - the flute instability - is theoretically possible. 
This result  is in agreement with recent experiments reported in the literature. 

M a s s  scaling has not been explicitly introduced in previous analyses. However, the 



I NTRO D UCTlO N 

This paper shows how dimensional analysis can be used in interpreting electron- 
containment experiments as analogs of ion-containment experiments. Such analyses can 
aid our understanding of charged-particle containment phenomena. It extends the appli - 
cation of limited experimental results to physically different systems. 

Electrons have been used fo r  some time to simulate phenomena associated with ion 
motion in magnetic fields. The lower electron inertia and lower magnetic-field strength 
requirements lead to simplifications in the design of the experiments and to substantial 
reduction in costs. As early as 1908, Birkeland studied charged-particle interaction 
with the Earth's magnetic field by injecting electrons toward a magnetized sphere (ref. 1). 
More recently, the effectiveness of various magnetic-trap configurations has been studied 
by means of electron injection into model field configurations (refs. 2 to 4). Interest in 
containing high-temperature ion plasmas for  production of thermonuclear fusion power 
has led to experiments such as the Table Top IV (ref. 5). In the experiment described in 
reference 5, a hot electron plasma (electron temperature much larger than ion tempera- 
ture) is trapped in an open-ended magnetic well. 

by Janes (ref. 6) using the kinetic and Maxwell equations. Schindler (ref. 7) has used 
a similar approach to obtain similarity laws fo r  the interaction of the solar wind with the 
magnetosphere. In the present report, the techniques of the a-theorem of dimensional 
analysis (refs. 8 and 9) are used to establish parameters of similarity between experi- 
ments in  which electrons a r e  used to simulate ion motion and the actual ion experiments. 
Such electron experiments can be referred to as electron analogs. 

select the pertinent variables. The r-theorem, together with these pertinent variables, 
permits derivation of dimensionless variables. These dimensionless variables can then 
be used to simulate an ion device with a much more tractable electron device. This 
technique is advantageous because (1) understanding an ion-plasma device can be attained 
without either the construction of the ion device or an explicit mathematical solution of 
its operation and (2) the performance of related systems (ion and electron) is readily 
correlated, aiding the systematic understanding of such related devices. 

Herein, simple physical models are used to derive similarity parameters and 
scaling relations. The useful properties of these models a r e  that (1) the dimensionless 
parameters can be checked with known equations (In this way the analog concept can be 
verified.), (2) the models can be used to interpret and correlate the results of charged- 
particle containment experiments reported in the literature (e. g., ref. lo),  and (3) the 
models can be used to demonstrate the possibility of constructing plasma analogs in a 
limited sense. 

Similarity parameters and scaling relations for  plasma devices have been obtained 

In the a-theorem approach, theoretical and experimental knowledge is used to 
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A physical model of a one-component charged-particle fluid is presented and analysed. 
The model is used to obtain a set of physical variables from which appropriate dimension- 
less parameters are derived by means of the s-theorem of dimensional analysis. These 
parameters are used to establish a set of similarity conditions applicable to designing 
electron analogs of ion trapping experiments. The dimensionless, or similarity, para- 
meters  are interpreted in te rms  of quantities characterizing physical systems. The re - 
sultant similarity conditions are applied to three one -component physical systems. The 
analysis is then used to correlate the data of similar electron- and ion-containment ex- 
periments reported in the literature. Finally, the possibility of using dimensional 
analysis techniques in plasma simulation is discussed. Although explicit application of 
the technique to the problem of plasma containment is not included in this report, the 
possible simulation of the flute instability is considered. 

PHYSICAL MODEL 

i Single-Species Charged Gas 

I Consider the nonrelativistic steady-state motion of a gas of charged particles in an 
arbitrary magnetic field. The set of equations governing the motion a r e  the set  of Max- 
well equations, 

V '  8 = 0  (3) 

v x  % =  yonqT' (4) 

and the momentum equation (neglecting gravitational body forces). 

nm(F . v)v' = nq(E + v' x 8) - v p  ( 5) 

(All symbols are given in appendix A; SI units (rationalized MKS system) are used 
throughout this report. ) The kinetic s t ress  tensor reduces to a scalar pressure 
p = 1/3 nmu2 when collisions a r e  sufficient to produce a Maxwellian particle distribution 
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with mean random speed much greater than the drift speed ( I  
cle velocity ? is given by the sum of the random velocity and the net drift velocity 

>> I GI). The total parti- 

V = i i + v '  

Here, I 
between r m s  and mean speed is unimportant in present dimensional considerations. It is 
now possible to use equations (1) to (5) to select the pertinent variables that describe the 
physical system. These variables and their dimensions are as follows (The fundamental 
dimensions are mass  M, length L, time T, and charge Q.): 

= (?)1'2 is used for  convenience, since the small  constant factor discrepancy 

U 

V 

B 

I 

m 

n 

q 

€0 

PO 

random or r m s  particle speed, L/T 

drift speed of gas, L/T 

magnetic-flux density, M/QT 

characteristic length, L 

mass of charged particle, M 

density of charged particles, 1/L 

electric charge, Q 

free space permittivity, T Q /ML 

free space permeability, ML/Q 

3 

2 2  3 

2 

Here the quantity 1 is used to represent all geometric lengths. The justification fo r  this 
will be considered when conditions of similarity are discussed. The electric field is 
assumed to arise solely from the charge 'distribution and is therefore not included as a 
separate parameter. 

Application of n-Theorem 

The preceding set of nine quantities describe the physical system by means of 
functional relations of the form 

There are four fundamental dimensions in these nine quantities so that, according to 
the a-theorem, five dimensionless parameters can be formed. Functionally, one has 
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The techniques of the n-theorem (refs. 8 and 9) are used to obtain the five dimensionless 
parameters. Making the choice of m, q, eo, and po for  the primary quantities, the 
equations to be solved are 

a b l  c1 dl el r l =  u 'm q EO po 

"3 b3 c3 d3 e3 " 3 = 1  m q €0 P o  

a b4 c4 d4 e4 n 4 =  n 4m 4 €0 P O  

n5=Va5m b5 q c5 EO d5 po e5 

(9) 

The method of solution is to substitute the dimensions of the variables shown and to de- 
termine the values for all the exponents such that the right sides of relations (9) to (13) 
are dimensionless (refs. 8 and 9). 
meters  are 

In this manner, the resulting dimensionless para- 

2 
" I=  EOPOU 

3 6  

3 

* 
n4 = - 

m 



These parameters may be  used in the form shown, o r  they may be  rearranged to obtain 
new dimensionless parameters. The only limitations on the use of new parameters for  
the problem under consideration is that they be five in number and that they should be 
expressible as separate and distinct combinations of nl ,  r2, r3 ,  r4, and r5.  
separate and distinct combinations chosen for this report, in order to facilitate physical 
interpretation, a r e  

The 

P1 = [;y = u V 

B I T  4 
3 4 -  znq 

n1 Eom u p 4 = - -  2 2 2 4  

2 2  2 2 2  " p o l  n q p =-- 3 4 -  
5 2 

"2 EOB 

(23) 

Physical Interpretation 

An understanding of the physical significance of the dimensionless parameters 
(eqs. (19) to (23)) is helpful in evaluating their uses and limitations. The first parameter 
PI is the ratio between the drift and r m s  speeds. 

P1 = (Drift speed) 
(rms speed) 
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The grouping mu/Bq in the second dimensionless parameter (eq. (20)) is effec- 
tively (to within a constant of order  one) the cyclotron radius of the charged particle. 
The remaining variable in P2 is the characteristic length of the device. 
sionless parameter P2 can therefore be expressed as the physical ratio 

The dimen- 

(Cyclotron radius) 
(Characteristic length) 

P2 = 

which is the well known adiabatic ratio. 

2 transverse stress of a magnetic field is B /2p0, SO that the third dimensionless para- 
meter P3 can be expressed as the physical ratio 

2 The kinetic pressure of the charged-particle gas can be written as mnu /3. The 

3 (Kinetic pressure) 
- 2 (Magnetic stress) 

P - -  

This parameter (without the numerical factor) is generally denoted as p in the litera- 
ture. 

tended analysis. 
ure of the transverse diffusional effect of Coulomb collisions. 
factor, P4 is the ratio of characteristic length to Coulomb mean f ree  path. 

The physical meaning of the fourth dimensionless parameter requires a more ex- 
This analysis is included in appendix B and shows that P4 is a meas- 

To within a logarithmic 

(Characteristic ~ - ~. length) 
(Coulomb mean free path) 

P4= ~ 

2 In the fifth dimensionless parameter (eq. (23)) the grouping B /2p0 is the magnetic- 
2 2 2  field stress. The remaining grouping n q I /eo can be interpreted to within a constant 

K (which depends on the spatial shape of the charge distribution) as the electric field 
s t ress .  The ratio of the two groupings of variables thus gives 

stress) 
(Magnetic stress) 

Similarity Conditions 

This report  defines conditions of similarity between an electron analog of an ion- 
containment system. To summarize the physical interpretation of the dimensionless 
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parameters, similarity would be established between an ion device and its electron ana- 
log if five physical ratios were equal for  the two devices. These ratios are 

(Drift speed) 
( rms  speed) 

P1 = 

(Cyclotron radius) 
(Characteristic length) 

P2 = 

- 3 (Kinetic pressure) 
p3 - (Magnetic stress) 

(Characteristic length) P -  ~ 

- (Coulomb mean free path) 

p = -  K (Electric stress) 
2 (Magnetic stress) 

The ratios of geometric lengths can be included as additional dimensionless para- 
meters  in an analysis of this type. The approach used herein for  establishing similarity, 
however, is that all geometric lengths must scale by the same factor. For example, if 
the length of an electron analog device is half that of the ion prototype, then all other 
electron analog dimensions should also be one-half of the corresponding ion-prototype 
dimensions. For this reason, only one length scaling ratio need be considered between 
ion and analog devices. 

Application of Simi lar i ty Conditions to Single-Species Gas 

The similarity discussed in the preceding section can be used to set conditions for  
designing electron analog experiments. Three possible applications are considered in 
which the similarity conditions can be specialized to yield appropriate scaling relations. 
The procedure for deriving scaling relations is presented in appendix C. In each case 
the applicability of relations (19) to (23) is discussed. 

plete set  of equations (19) to (23) a r e  needed. The appropriate scaling relations a r e  
(appendix C) 

High-density charged-particle gas trapping in  magnetic ~. ~~ _ _  - . field. - In this case the com- 

8 



6 3  -- ne-  Z M 
ni 

(24) 

3 2  -- B e - Z M  
Bi 

Here M is the ratio of electron mass  to ion mass  me/mi M 1/2000. It is apparent that, 
for  this case and for  reasonable ion model dimensions, analog dimensions become so 
large that experiments a r e  impractical. Physically, the difficulty arises from consider - 
ing only a single-species self-interacting gas of charged particles. For this case, large 
electric s t resses  can develop as a result of space charge buildup, and the parameter 
P of relation (23) is particularly significant. 

Low-density 7 ~~ low-temperature case. - In te rms  of the physical model discussed 
previously, this case corresponds to the situation in which n - 0 and u - 0. The 
Maxwell equations then a r e  not involved in the calculations and the equation of motion of 
the charged particle becomes 

5 

Studies involving the injection of electrons into magnetic fields have been used to 
evaluate the trapping characteristics of various field configurations (refs. 2 to 4). 
Studies have also been used as a basis for checking the validity of the adiabatic theory 
of particle motion in magnetic fields (refs. 11 to 13). 
analysis, these electron-injection experiments can be related, through scaling, to cor- 
responding ion injection and trapping experiments. 
meters  (19) to (23) to this situation. 

In te rms  of the present simulation 

This is done by specializing para- 

P1-0 (29) 

P3 = P4 = P5 = 0 
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The remaining parameter P2 corresponds to the scale factor derived by Northrop 
(ref. 14). By setting P2i = P2e and using Pli = Ple, the following relation is obtained: 

vi m B.1.Z ui e 1 1  

where 

q. = Z e  
1 

Thus, for example, one can independently scale mass, length, and magnetic-field strength. 
The velocity scaling will then depend on these three scaling factors. 

Low-density, collisionless -. case. - - This case corresponds to the situation in which 
the Coulomb mean f r ee  path exceeds all characteristic lengths of the system. The 
equations governing this case are the set  of Maxwell equations and the Vlasov equation. 
The scaling laws have been derived by Schindler (ref. 7) using the complete set of equa- 
tions. Scaling relations can be obtained from the present analysis, again, by specializing 
the similarity parameters (19) to (23). For this case P4 = 0 and only P1, Pa, P3, 
and P5 need be kept constant for  scaling. The scaling relations a r e  

These results are in agreement with those of reference 7. 

CORRELATION WITH EXPERIMENT 

It is of interest to attempt to correlate this similarity analysis with experiment. The 
experiment must permit the correlation of data obtained from a scaled electron analog of 
an  ion-injection-trapping machine to the data obtained from the actual ion prototype. 
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Such an  experiment has been reported in reference 10. Here, an electron-injection ex- 
periment was studied preliminary to the performance of an  ion-injection experiment. 
Both experiments consisted of the injection of charged particles parallel to the axis of a 
cusped magnetic-field configuration and measuring the trapping characteristics of the 
configuration. 

type. A 185-eV electron beam was injected into cusped fields with maxima at about 
9 0 ~ 1 0 - ~  and 1 3 5 ~ 1 0 - ~  tesla. 
time (time required for an electron to escape as a result of magnetic-field gradients only) 
was found to be 0.245 microsecond. Prolonged containment was attained by electrostatic- 
ally closing the cusp leaks, so that electron-containment t imes for Bm, = 1 3 5 ~ 1 0 - ~  tes- 
la ranging from about 1.43 to 5 microseconds were realized, depending on background 
gas pressure. The electrostatic field was designed so as not to penetrate into the trap- 
ping region. 

maxima ranging from 1.3 to 1.7 tesla. Beam injection energy was 17 keV. The energy 
distribution of trapped ions was not determined; however, estimates of the mean energy 
were of the order of several  keV. Containment t imes depended on background pressure 
and ranged from 12 to about 60 microseconds. Extrapolation of the data to zero back- 
ground pressure yielded a nonadiabatic trapping time of about 4 microseconds. 

To examine these results within the framework of the present analysis, it is neces- 
sary to use the similarity parameters (19) to (23). Intuitively, one might initially sus-  
pect that Coulomb collisions in this experimental environment might be negligible (i. e., 
P4 = 0) since charged-particle densities are relatively low. However, the scaling rela- 
tions derivable from the condition P4 0 do not result in correlation between the elec- 
tron and ion experiments. This lack of correlation is consistent with the fact that Cou- 
lomb collisions, although a small  effect, can be the dominant source of charged-particle 
diffusion. In order to correlate these experiments by means of the present analysis, it 
is necessary to assume that the parameter P5 vanishes. This parameter is the ratio 
between electric- and magnetic-field s t resses ,  and can be shown to be essentially the 
ratio (v/c) . Thus requiring P to vanish, in effect, implies that the condition v << c 
holds, which is the case for most plasma experiments. 

The scaling relations for this case are obtained by a procedure analogous to that 
given in appendix C. 

The electron model was geometrically scaled by a factor of two over the ion proto- 

For the case of 90X10-4tesla, the nonadiabatic confinement 

The ion prototype experiment used proton injection into similar cusped fields with 

2 
5 

- _  - z-2M -1 2 

"e 
(3 5) 

11 

I II 



- 1  

Bi -- - z-1/2M-3/4L5/4 

Be 

In steady state, time scales as z/v, so that 

t. 1 - z-1/2M-1/4L-5/4 
-- 

te 

For  values of L = 1/2 and M - l  = 1836, the scaling relations become (Z = 1) 

-- ni - 459 

ne 

‘e 

-- ti - 15 .6  

te 
where gi and &‘e are ion and electron kinetic energies, respectively. Table I compares 
calculations using these relations with the data of reference 10. The data obtained from 
the electron analog experiment were used to calculate corresponding ion prototype values. 
The calculated values are then compared with measurements reported from the ion injec- 
tion experiment. Particle containment times were measured in reference 10 for both 
the electron- and ion-trapping experiments. The nonadiabatic escape time given for  the 
ion-trapping experiment was obtained by extrapolating the experimental containment time 
curve (ref. 10) to zero background pressure. 
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TABLE I. - COMPARISON OF CALCULATION TO EXPERIMENTS OF REFERENCE 10 

~ O X ~ O - ~  to 1 3 5 ~ 1 0 - ~  

1 . 3  to 1 . 7  

.. 

Item 

Measured with leaks 
open (nonadiabatic 

escape),  
0.245 p s e c  

Extrapolated to  
ze ro  p re s su re  
(nonadiabatic escape),  
4 p s e c  

~ 

Electron analog 
(experimental  
data, ref. 10) 

__ - ._ - .- - 

Ion prototype 
(experimental  
data, ref .  10) 

-_  . - _ _  

Ion prototype (cal- 
culated f r o m  elec-  
t ron analog data) , 
- .- ___ 

Containment 
number 
density, 

m -3 

>lo12 

5 x 1 0 ~ ~  to  

Mean par t ic le  I Magnetic flux 1 Containment t imes  

Measured with leaks 
closed (diffusional 
escape),  
1.43 to 5 p s e c  

Measured as function 
of pres su re  (differen- 
tial escape),  
20 to 50 p s e c  

Diffusional escape, 
22 to 78 p s e c  

Experimentally, the containment time increased with background pressure. Within 
the framework of the present analysis, this time varies as 1 /v. Momentum-transfer 
collisions between charged particles and background particles would effectively decrease 
v, thus increasing t. Such collisions result  in the diffusional losses observed in the 
experiments. 

seem to indicate that correlation between an electron analog of an ion-trapping experi- 
ment using dimensional analysis techniques is indeed possible. 

The good agreement between calculated and measured ion-prototype variables would 

PLASMA S I M U  LATlO N 

So far we have considered systems containing positively o r  negatively charged par- 
ticles only. It may be even more interesting to determine whether these similarity 
parameters can be used to scale plasma systems; if so, what are the limitations of such 
a simulation? 

For  purposes of discussion, one can distinguish between an ion plasma and an elec- 
tron plasma. The ion plasma is characterized by ion energy much greater than electron 
energy; that is, electrons serve as space -charge neutralizing background particles. 
For an electron plasma, the situation is reversed (electron energy is much greater  than 
ion energy). Herein, the conditions f o r  which an electron plasma can be regarded as the 
analog of an ion plasma wil l  be determined. 

13 



In the following analysis, two-component plasmas are considered. The two species 
are regarded as interacting fluids, and the appropriate hydrodynamic equations are in- 
vestigated. A complete set of equations describing these systems are as follows: 

Momentum equations: 

Continuity equations : 

0 

at, 

Maxwell equations: 

- 1  vs * = - nQSqQs 
€0 Q 

4 

Vs * Bs = 0 

- aBS 

a tS 

V s X E s =  - -  

where 
-.. 

Es = poGs Ds = E E o s  

Equations of state: 

(42) 

(43) 

In these equations the subscripts a and p denote either ions or electrons (a # p) and 
s denotes the system (ion plasma, s = 1; electron plasma, s = 2). 
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Now, consider the following problem. Under what conditions can the previously de- 
rived similarity parameters be used to transform system s = l equations into system 
s = 2 equations, leaving the form of the resulting equations'invariant? The analysis 
will again be restricted to steady-state systems. This eliminates all a / a t  terms in the 
equations. Two sets of physical variables must be considered for each plasma system. 
If a denotes the primary species and p the background species, then the two-species 
variables a r e  n n v v u  is considered sepa- 
rately. ) In order to bring the problem into the realm of the one-component similarity pa- 
rameters  (19) to (23)' equations (39) to (43) must be appreciably simplified. 
consider the term P 
sions per unit time between the primary charged species a and the background species 

. In p in system s. From conservation of momentum, we have that P 
the present case it will be  assumed that collisional mean free paths are sufficiently long 
to permit neglect of these momentum-transfer terms. Thus the analysis which follows 
holds for  collisionless plasmas. Additional assumptions required are as follows: 

- - 
as' ps' as' ps' as' ups' mas' "ps. (Pap,  s 

To begin with, 
This term represents the momentum transferred by colli- 

aP, s' 

- 
ap, s - - ppa, s 

(1) Electron and ion number densities a r e  equal for both s = 1 and s = 2. 
(2) "4"/" << me/mi 
(3) Vas>> vps 

as- 

(4) Second order te rms  in the equation of motion for. the background species a r e  

(5) qas = - q 
negligible. 

Equations (39) to (45) then reduce to the following set: 
(e. g. , electrons and protons) 

Ps 

Momentum equations: 

- d 

O =  n q (Es+  v' x B s )  - Vspps 
Ps Ps Ps 

Continuity equations: 

d 

vs - (nasvas) = vs - bPsTps) = 0 

Maxwell equations: 
-c 

Vs * E, = 0 

Vs * Bs = 0 

Vs X E, = 0 

- 
- 

4 
- 

vs Bs = ponasvasqas 

(46) 

(47) 
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Equations of state: 

and 

2 Pas=-- n u  3 Q S  QS as 

(53) 

J 1 2 
pps = 3 mpsnpsups 

From assumption (2), and equation (53) the partial pressures  pas and p 
that pas >> pPs. Adding the momentum equations (46) and (47) yields the total momen- 
tum conservation equation 

are such 
Ps 

The only Maxwell equation involved is 

+ Pps -Pas, N ns=  nos= "ps, and = q = 
s as  

in equa- 
Note that the change of variables ps = pas 

tions (54) and (55). In this manner the complete se t  of plasma equations can be reduced 
to one involving single -particle variables only, and the similarity parameters (19) to (23) 
are thus applicable to such systems. Fo r  nonrelativistic particle speeds, P5 can be 
neglected (see the argument given in the Experimental Correlation section). The scaling 
relations appropriate to this plasma system a r e  as follows: 

4 has been made. From assumption (3), we have that (TQs - v' ) M v - qps Ps QS 

-- "1- z-2M-1L2 

"2 

-= 1 z - 1/2M -3/4L 5/4 

B2 
(57) 

where s = 1 denotes the ion plasma and s = 2, the electron analog, 
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- 
I 

i m 

and 

Using the steady-state time scaling t - z/v results in 

1 - - 1/2NI -1/4L - 5/4 -- 
t2 

(59) 

By solving for  all the quantities with subscript 1 in te rms  of subscript 2 quantities 
and substituting into equations (54) and (55) for s = 1 (noting that V1 = LV2), the ap- 
propriate s = 2 equations a r e  obtained. They are identical in form to the s = 1 equa- 
tions. Thus the total momentum, continuity, and Maxwell equations for  the described 
plasma systems are invariant under the proposed transformations (and assumptions). 

Possible Simulation of Plasma-Containment Systems 

Of great interest would be a rigorous demonstration of the possibility of using hot 
electron plasma containment to simulate hot ion-containment systems. Difficulties a re  
encountered from the fact that many observed and predicted instabilities associated with 
such systems result from locally, or  microscopically, developed growth mechanisms 
which cannot be simply correlated with macroscopic variables. For the dimensional 
analysis used in this report, the complexity of the relation between instability growth 

to know all the variables on which these mechanisms depend in order to obtain appro- 
priate similarity parameters. There does exist a class of instabilities for  which the 
nine quantities of equation (7) are applicable, and thus the scaling parameters derived 
herein can be used to describe their simulation. 

v mechanisms and physical variables need not be known exactly. However, it is essential 

Simulation of Flute Instabil ity 

One type of hydromagnetic instability which is known to depend, in part, on the 
magnetic -field configuration is the interchange, or flute, instability. 
has been extensively considered in the literature (refs. 15 to 17). An energy principle 

This instability 
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has been used (ref. 17) to derive the following stability criterion for  open-ended mir ror  
systems. 

Here, the integration is performed along a magnetic-field line. The radius of curvature 
R of a field line is defined as positive at the mirrors .  The radius r is measured from 
the symmetry axis. Consider this integral in an  analog experiment. The scaling rela- 
tion (57) can be used to derive the following relation between model and prototype 

Since the scale factor (L/M)3/2 is always positive, it is evident that, if the left side of 
equation (61) is positive, the integral on the right side will also be positive. Thus, si- 
mulation of flute stabilization should be theoretically possible for  mir ror  systems. This 
conclusion is in qualitative agreement with results obtained from recent Table Top IV 
experiments (ref. 5). Therein a linear quadrupole magnetic field superimposed on an 
axial field stabilized a hot electron plasma against the flute. Although scaling was not 
rigorously satisfied, the authors concluded that their results (including a measured 
instability) may have been the electron analog of hot ion plasma, quadrupole-stabilized 
systems such as DCX, OBRA, PHOENIX, and ALICE. 

CONCLUSIONS 

A physical model of a one-component charged fluid was used to develop similarity 
parameters. These parameters, obtained by means of the 8-theorem of dimensional 
analysis, are assumed to characterize the macroscopic motion and containment of the 
fluid in a magnetic field. The similarity described is between an  ion-containment sys- 
tem and an electron analog of such a system. 

They a r e  used to 
scale ion-containment systems to their electron analogs. These relations are expressed 
in te rms  of the electron to ion mass  ratio me/mi and the electron to ion experiment 
geometric length ratio 1 e/t i. 

Scaling relations are derived from the similarity parameters. 

f 
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I Mass scaling (e. g., replacing protons by electrons) has not been explicitly intro- 
duced in previous analyses. However, the results reported herein are in general agree- 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 27, 1969 
120-26-02-01-22. 
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APPENDIX A 

SYMBOLS 

aj=l,  5 
B 

b 

'j=1, 5 

C 

'j=1,5 
6 

d j =  1 ,5  
E 

e j = l ,  5 
H 

K 

L 

Q 

1 

ZE 
M 

m 

n 

P 

'j=l, 5 
P 

R 

exponents in  relations (9) to (13) 

magnetic-f lux density 

impact parameter in appendix B 

exponents in relations (9) to (13) 

distance of closest approach, q /4i7eOmv 2 2 

speedof light 

exponents in relations (9) to (13) 

displacement current 

exponents in relations (9) to (13) 

electric field 

particle kinetic energy in eq. (37) 

exponents in relations (9) to (13) 

magnetic -field intensity 

geometrical shape factor in P5 

length ratio 

length measured along field line 

characteristic length of system 

effective cut-off length for Coulomb interactions 

mass ratio 

charged -particle mass  

charged-particle density 

momentum transfer term 

dimensionless parameters defined by relations (19) to (23) 

pressure 

electric charge 

radius of curvature of a field line 
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r 

t 

U 

U 
-c 

V 
V 

V 
-c 

Avl 

6vl 

W 

Z 

€0 

xC 

I-LO 
a j=1,5 

50 

radius measured from symmetry axis in eq. (60) 

time 

r m s  speed 

r m s  velocity 

total particle velocity 

drift speed or particle speed 

drift velocity 

total velocity change averaged over many encounters 

dimensionless quantity proportional to diffusion coefficient (herein referred 
to as a scattering parameter) 

incremental change in velocity normal to initial velocity direction resulting 
from a single binary encounter 

mean relative speed of incident test particle in appendix B 

electronic charge number 

f ree  -space permittivity 

Coulomb mean free path, 4acO(mv ) /q In A 

free -space permeability 

dimensionless parameters defined by relations (14) to (18) 

generalized function defined by eq. (7) 

2 2 2  2 

Subscripts : 

e electrons in analog 

i ions in simulated system 

S plasma system 

a! electrons or ions 

P electrons or ions (a! # p) 
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APPENDlX B 

THE PHYSICAL INTERPRJTATION OF P4 

Consider a charged particle with mean relative speed w traversing a gas of like 
The mean kinetic energy of the gas is assumed to be particles of uniform density n. 

much less than the kinetic energy of the incident particle, so that the mean relative speed 
w is very nearly the incident particle speed v. As a result  of Coulomb collisions with 
the background particles, the incident particle will suffer a cumulative large angle de- 
flection after traversing a characteristic length 2 of the gas. The total deflection is 
measured by the quantity (Av,/v)~, where Avl is the total deflection normal to the 
incident direction. Herein the quantity (Avl/v) is defined as a scattering parameter 
which can be related to a diffusion coefficient. 

For a binary encounter between two charged particles, the incremental change in 
velocity normal to the incident direction is given by 

2 

where b is the impact parameter. Squaring equation (Bl) yields 

4 
q 

4i7 EOm b v 2 2  2 2 4  

Denote by n the background density resulting from some space charge distribution es- 
tablished in a time of the order of I/v. Then the scattering parameter is given by 

The volume element d r  is that swept out by the test  particle as it passes through the 
scat terers  of uniform density n. Thus, 

dr  = 2i71b db 

It is known from energy considerations that the lower limit on the integral must approxi- 
mate the distance of closest approach 
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bo = q2 
4ne0mv 2 

The upper limit 1 E denotes an effective cut-off length for  Coulomb interactions. Gen- 
erally, this length is taken to be the Debye length (refs. 18 and 19). This is rigorously 
true for a plasma in which thermal equilibrium is maintained. For the present problem, 
in which there are charges of only one sign, there is no cut-off distance short of the 
extent of the charged-particle gas 1 .  It is therefore assumed that iE = 1 in equa- 
tion (B3), so that substituting equation (B2) into (B3) and performing the integration yields, 
for the scattering parameter, 

2 2 41n (t) 
This relation can be written in te rms  of the dimensionless parameters P1, P3, P4, 

and P5 given by relations (19) to (23). 
tor and denominator of the logarithmic factor by (n l ) l I2  yields the result 

Substituting for bo and multiplying the numera- 

so that in te rms  of the dimensionless parameters 

Because P1, P3, P4, and P5 a r e  independent quantities, P4 can be altered without 
affecting the ratio p5/P1P3 in the logarithm. Thus the scattering parameter has the 
form 

2 

2 if C = 4s(P5/P1P3) is held constant. 
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The scattering parameter (B7) can be shown to be equal to the ratio of the character- 
istic length Z to a mean free path. The mean free path is defined as that corresponding 
to a 90' deflection of the incident electron. The total deflection of the particle after 

2 traversing a characteristic length 2 of gas  is given by (Av,) . The number of colli- 
sions required to deflect the particle through a right angle is the number of deflections 
Av 
(V/AV,)~. The characteristic time for  traversing a distance 2 is 2/v. Thus the mean 
free path for  90' scattering is 

required to change all the particles' motion into transverse motion. This number is 
1 

h = v  
C 

2 

.($) -- 2 -  
V 

2 2 4  2nc0m v 

q n l n  - 4 2E 

It is thus apparent that 

and thus the scattering parameter and the ratio 2/AC have the same functional depend- 
ence on P4. 
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APPENDIX C 

DERIVATION OF THE SCALING RELATIONS 

In the following calculations, we use the similarity parameters (19) to (23) to obtain 
scaling laws. These scaling laws are applied specifically to electron simulation of ion 
motion in a magnetic field. The subscripts on the physical quantities distinguish between 
electron and ion quantities. Thus me is the electron mass, and mi is the ion mass. 

if 
Similarity between an  electron analog and an ion prototype is rigorously established 

P . = P . .  j=1, 2, 3,4, 5 (C 1) 1.l 

Using equations (19) to (23), we obtain from (Cl) 

2 m.n.u POmeneUe - - P O  1 1 i 

ve - vi 
ue u. 
-- - 

1 

4 2.n.q. ‘eneqe - - 1 1 1  

2 2 4  2 2 4  
EOmeue EOmi ui 

Now, q = e and q. = Ze. Also, 
systems. Equations (C2) to (C6) then yield 

and po are the same for both electron and ion e 1 
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2 meneui m.n.u. 1 1 1  

mzut m.u.  2 4  
1 1  

2 2  2 2 2  2 n l iniZ -- e e -  

From equation (Cg), 

n 

n. 'e 1 

2 Solution of equation (C7) for  (u,/ui) gives 

From equation (C8), 

Substitute equation (C12) into equation (C13) to obtain 
9 
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From equations (C10) and (C14), 

Substituting equation (C15) into equation (C12) leads to the result 

Substituting equations (C 14) ani (C16) into equation (C11) yields, finally, 

- = z  ‘i 2 ” e  - 

‘e mi 

Equations (C14) to (C17) constitute the complete se t  of scaling laws satisfying the simi- 
larity conditions (Cl ) .  
then equations (C14) to (C17) can be written as follows: 

If the mass  ratio me/mi is defined by the scaling factor M, 

ne 6 3 - = Z  M 
“i 

V 

V. 

e ? = I = -  
‘i 1 

U 

‘i 2 -=  Z M 
‘e 

For those cases in which the assumption of space charge neutralization is valid, similar-  
ity conditions Psi = P5e can be neglected. Proceeding in a manner analogous to that 
used with relations (C7) to (C9), one obtains the following scaling relations 
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Introducing the scaling factors M and L results in relations (C22) to (C24) becoming 
relations (35) to (37) of the text (Equation (37) is obtained by multiplying equation (C23) 
by M and inverting). 
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